
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
在数据分析领域,我们除了需要掌握如何来获取数据的方法以外,一个合适的分析工具和数据分析方法也是很有必要一起掌握的。所以,我们今天就给大家简单介绍一下,对于一些销售行业来说,如何才能根据时间序列数据分析法来进行库存调整的,下面就开始今天的主要内容吧。
应用背景:
通过分析序列进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。
时间序列分析:
时间序列就是按时间顺序排列的一组数据序列。
时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。
分析工具:
SPSS(数据分析的重量级应用,与SAS二选一)
实践案例:通过历史数据预测未来数据,所涉及的都是最简单的实践,抛砖引玉,重在方法,不论多复杂的数据,方法是一样的。
如已知前几年每月的销售量,预测未来的销售量。
一、时间序列分析简介
时间序列分析有三个基本特点:
假设事物发展趋势会延伸到未来
预测所依据的数据具有不规则性
不考虑事物发展之间的因果关系
并不是所有的时间序列都一定包含四种因素,如以年为单位的诗句就可能不包含季节变动因素。
四种因素通常有两种组合方式:
四种因素相互独立,即时间序列是四种因素直接叠加而成的,可用加法模型表示:Y=T+S+C+I
四种因素相互影响。即时间序列是四种因素相互综合的结果,可用乘法模型表示:Y=T*S*C*I
其中,原始时间序列值和长期趋势可用绝对数表示;季节变动、循环变动、不规则变动可用相对数(变动百分比)表示。
二、季节分解法
当我们对一个时间序列进行预测时,应该考虑将上述四种因素从时间序列中分解出来。
为什么要分解这四种因素?
分解之后,能够克服其他因素的影响,仅仅考量一种因素对时间序列的影响。
分解之后,也可以分析他们之间的相互作用,以及他们对时间序列的综合影响。
当去掉这些因素后,就可以更好的进行时间序列之间的比较,从而更加客观的反映事物变化发展规律。
分解之后,序列可以用来建立回归模型,从而提高预测精度。
所有的时间序列都要分解这四种因素吗?
通常情况下,我们考虑进行季节因素的分解,也就是将季节变动因素从原时间序列中去除,并生成由剩余三种因素构成的序列来满足后续分析需求。
为什么只进行季节因素的分解?
时间序列中的长期趋势反映了事物发展规律,是重点研究的对象;
循环变动由于周期长,可以看做是长期趋势的反映;
不规则变动由于不容易测量,通常也不单独分析。
季节变动有时会让预测模型误判其为不规则变动,从而降低模型的预测精度
综上所述:当一个时间序列具有季节变动特征时,在预测值钱会先将季节因素进行分解。
步骤:
定义日期标示变量:即先将序列的时间定义好,才能分析其时间特征。
了解序列发展趋势:即序列图,确定乘性还是加性
进行季节因素分解
建模
分析结果解读
预测
作者:膝盖哥
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!