课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,大数据信息收集和信息处理成为了企业进行用户运营与产品营销的主要理论依据。今天,我们就一起来了解一下在大数据处理过程中的一些框架软件的应用表现。希望通过对本文的阅读,能够提高大家对大数据的认识。
Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架,初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势:
Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求
官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍,甚至能够将应用在磁盘上的运行速度提升10倍
目标:
1.架构及生态
2.spark 与 hadoop
3.运行流程及特点
4.常用术语
5.standalone模式
6.yarn集群
7.RDD运行流程
架构及生态:
通常当需要处理的数据量超过了单机尺度(比如我们的计算机有4GB的内存,而我们需要处理100GB以上的数据)这时我们可以选择spark集群进行计算,有时我们可能需要处理的数据量并不大,但是计算很复杂,需要大量的时间,这时我们也可以选择利用spark集群强大的计算资源,并行化地计算。
Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据
MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作。
Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
Driver: 运行Application 的main()函数
Executor:执行器,是为某个Application运行在worker node上的一个进程
Spark与hadoop:
Hadoop有两个核心模块,分布式存储模块HDFS和分布式计算模块Mapreduce
spark本身并没有提供分布式文件系统,因此spark的分析大多依赖于Hadoop的分布式文件系统HDFS
Hadoop的Mapreduce与spark都可以进行数据计算,而相比于Mapreduce,spark的速度更快并且提供的功能更加丰富。
构建Spark Application的运行环境,启动SparkContext
SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,
Executor向SparkContext申请Task
SparkContext将应用程序分发给Executor
SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,后由Task Scheduler将Task发送给Executor运行
Task在Executor上运行,运行完释放所有资源
Spark运行特点:
每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统
Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了
提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换
Task采用了数据本地性和推测执行的优化机制
常用术语:
Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码
Driver: Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
Executor: 某个Application运行在worker节点上的一个进程, 该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数
Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
Standalon : spark原生的资源管理,由Master负责资源的分配
Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
Hadoop Yarn: 主要是指Yarn中的ResourceManager
Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点
Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job
Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非终的Stage(Shuffle Map Stage)和终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方
DAGScheduler: 根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASkScheduler。
来源:csdn
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。