课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据技术的发展让企业在精准化营销领域得到了强有力的技术支持。而今天我们就一起来了解一下,大数据数据管理都有哪些常见问题。
1、元数据管理
DBus可以实时拿到数据源的元数据并提供服务查询
Moonbox可以实时拿到数据系统的元数据并提供服务查询
对于RTDP架构来说,实时数据源和即席数据源的元数据信息可以通过调用DBus和Moonbox的RESTful服务归集,可以基于此建设企业级元数据管理系统
2、数据质量
Wormhole可以配置消息实时落入HDFS(hdfslog)。基于hdfslog的WormholeJob支持Lambda架构;基于hdfslog的Backfill支持Kappa架构。可以通过设置定时任务选择Lambda架构或者Kappa架构对Sink进行定时刷新,以确保数据的终一致性。Wormhole还支持将流上处理异常或Sink写入异常的消息信息实时Feedback到Wormhole系统中,并提供RESTful服务供三方应用调用处理。
Moonbox可以对异构系统进行即席混算,这个能力赋予Moonbox“瑞士军刀”般的便利性。可以通过Moonbox编写定时SQL脚本逻辑,对关注的异构系统数据进行比对,或对关注的数据表字段进行统计等,可以基于Moonbox的能力二次开发数据质量检测系统。
3、血缘分析
Wormhole的流上处理逻辑通常SQL即可满足,这些SQL可以通过RESTful服务进行归集。
Moonbox掌管了数据查询的统一入口,并且所有逻辑均为SQL,这些SQL可以通过Moonbox日志进行归集。
对于RTDP架构来说,实时处理逻辑和即席处理逻辑的SQL可以通过调用Wormhole的RESTful服务和Moonbox的日志归集,可以基于此建设企业级血缘分析系统。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。