课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
java编程开发随着互联网的不断发展而被众多程序员所学习,今天我们就一起来了解一下,java编程中除了基础算法以外还有哪些算法值得我们掌握。
算法一:分治法
基本概念
1.把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
2.分治策略是对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
适用情况
1)该问题的规模缩小到一定的程度就可以容易地解决
2)该问题可以分解为若干个规模较小的相同问题,即该问题具有优子结构性质。
3)利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
算法二:贪心算法
一、基本概念:
所谓贪心算法是指,在对问题求解时,总是做出在当前看来是好的选择。也就是说,不从整体优上加以考虑,他所做出的仅是在某种意义上的局部优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
二、贪心算法的基本思路:
1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部优解。
4.把子问题的解局部优解合成原来解问题的一个解。
三、贪心算法适用的问题
贪心策略适用的前提是:局部优策略能导致产生全局优解。
实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
算法三:动态规划算法
一、基本概念
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段优化决策解决问题的过程就称为动态规划。
二、基本思想与策略
基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到优的局部解,丢弃其他局部解。依次解决各子问题,后一个子问题就是初始问题的解。
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
与分治法大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。
三、适用的情况
能采用动态规划求解的问题的一般要具有3个性质:
(1) 优化原理:如果问题的优解所包含的子问题的解也是优的,就称该问题具有优子结构,即满足优化原理。
(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。