课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,企业对于数据分析的看中程度也在不断的提高,而好的数据分析能够对各个职业发展都起到推动作用,而今天我们就一起来了解一下,数据分析之前的数据收集都包含了哪些内容。
收集数据一般也可以有更专业的产品经理或数据分析师,设计师了解数据收集的过程,可以了解可能影响结论的因素都有哪些,尽量规避风险,拿到准确可靠的数据。
·数据观测时长:
根据产品特性,规律波动的数据以波动周期的整数倍为观测时长即可。如以周为周期规律性波动的以周为单位观测,一般为一周到两周。尽量避免节假日、活动期间、淡旺季切换周期内观测数据得出结论,因为数据波动大且影响因素不确定。
·数据观测方法:
如果要做数据对比,确定对比方式,AB测和改版前后对比,确保选择准确性及可行性佳的方式。如果要做AB测,则需要避免多个AB测交叉同时做,另外流量配比的多少也可能影响结果,一般采用50%:50%的流量配比。
如果采用改版前后对比的方式,则需要在产品表现平稳的时间周期内,避免旺季淡季变化周期内观测。不推荐用这种方式对比,影响因素较多,难以得出较为准确的结论。
·数据量级预估:
样本量:一要有代表性,一般数据统计采取全样本的方式,没有这类问题;有些调研性质的数据,需要通过人工处理,选取部分数据进行分析即可,此时要求选取数据要占总数据量的一定比例,才具有代表性;二是样本基数要足够说明问题,量级太低,结果波动太大,可以调高量级或拉长观测周期,再得出结论,否则没有可信度。
转化量:在样本基数足够的基础上,如果转化量级太低,也可能转化量在小范围波动时,转化率波动较大,导致数据不准确,可信度低。此时应考虑放弃观测转化率,寻找其他方式。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请在707945861群中学习了解。