课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
数据平台是大数据技术应用的一个表现形式之一,下面我们就通过案例分析来了解一下,数据平台发展都经过了哪些阶段。
1、数据库阶段
电商创业早期启动非常容易,门槛相对来说较低,试错成本较少。三五个小伙伴组个小团队,做一个可以下单的前端页面,云上搭几台服务器再加上一个MySQL数据库,形成一个简单的OLTP系统,就可以给用户去使用,它的主要作用用于保证数据持久化存储和简单商品交易查询。
现在估计很多小型电商与小程序创业者的初期都是这么干的,甚至找个外包团队做完就开始对于市场试错。
随着客户、订单和外部流量的逐步上升,数据量从GB发展成TB级别,数据库通过普通查询存在较大的压力,只能做升级改造,于是就有了数据仓库的诞生。
2、数据仓库阶段
随着业务指数级的增长,数据量增长的同时公司的组织架构慢慢变得庞大、复杂,面临的问题也越来越多,越来越深入。公司上层关心的问题,从初简单的想知道“昨天、今天的GMV”、“上周的PV、UV是多少”、“某品类商品的环比、同比的增长比例是多少”,慢慢演化到希望通过数据进行精细化运营和用户的价值模型分析。
希望通过数据统计/分析/挖掘,分析出用户在某种特定的使用场景中,比如“18~25岁女性用户在过去三个月对服装类商品的购买行为与节假日促销活动之间的关系”。
当公司运营和高层,提出此类非常具体的case,希望通过数据统计/分析/挖掘对公司运营决策起到关键性作用的问题,其实是很难从业务数据库从直接调取出来。
原因是由于数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,为捕获数据而设计,在设计上数据库是尽量避免冗余,一般采用符合范式的规则来设计。
3、数据平台阶段
一、企业业务系统过多,彼此数据没有打通。涉及分析数据的过程当中,需要先从各个系统寻找到相应的数据,然后提取数据进行整合打通,才能做数据分析。在这个过程中人为进行整合出错率高,分析效果不及时,导致整体的效率低下,数据迁移、数据同步的滞后与错误;
二、业务系统压力大,架构相对笨重,做数据分析计算消耗资源很大。需要通过将数据抽取出来,经过独立服务器来处理数据查询、分析任务,来释放业务系统的压力;
三、性能问题,公司业务越来越复杂,数据量越来越大。历史数据的积累严重,数据没有得到使用。原始数据系统不能承受更大数据量的处理时,数据处理效率严重下降。
4、数据中台阶段
数据量的指数级增长,从PB发展成EB级别,为了更好的赋能业务,企业启动中台战略,打通各个业务线的数据,整合汇集数据,在底层通过技术手段解决数据统一存储和统一计算问题。
在数据服务层通过数据服务化的DataAPI的方式,打通数据平台和前台的业务层对接,结合算法,把前台业务的分析需求和交易需求直接对接到中台来,通过数据中台处理和逻辑运算,然后在反向赋能业务,真正做到意义上的『一切业务数据化,一切数据业务化』。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。