课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据技术随着互联网的不断发展而受到众多企业的关注,而今天我们就通过案例分析来了解一下,大数据技术对企业发展都有哪些作用。
实现工业数据民主化
大数据技术是一把双刃剑。从理论上来说,更多的数据意味着需要更快的分析以获得更高效、更有成效的输出。对IT团队的运作方式了解得越多,就可以更好地利用这些见解来提高生产力、节省时间、提高成本效率和促进业务增长。但更多的数据并不总是意味着是更好的数据。其情况通常恰恰相反:企业积累的数据多于他们使用或知道如何处理的数据。这种海量数据收集方法意味着企业终会拥有大量未使用、非结构化、未优化的数据。数据越多,可见性就越差。
为了使工业数据具有可操作性和价值,需要识别和提升基于相关性的数据。这种来自企业不同资产的直观数据,从传感器到边缘再到云平台,为格式化和保护数据建立了通用基线。与基于来源或团队经历不同格式和安全阶段的孤立数据不同,企业中的所有数据都分配了身份标签并采用相同的格式,从而在企业中开放数据可见性和访问权限。
战略性工业数据管理
战略性工业数据管理方法不是大量收集数据并将其倾倒到非结构化数据沼泽中,而是利用数据历史记录和工业人工智能解决方案使其数据在企业中更加可见、可访问和可操作。
这不仅仅是清理数据湖或使数据具有可操作性。这种战略性数据管理方法还有助于弥合劳动力中日益扩大的技能差距。随着具有多年领域专业知识的资深员工退休,取而代之的是经验水平可能不足的年轻员工,这可能带来技能差距。人工智能驱动、数据历史驱动的战略数据管理方法可以确保关键的历史知识得到保留和共享,并在整个企业中广泛应用——无论是团队还是个别员工。
大数据将继续发挥关键任务作用,为企业提供制定与具体业务价值结果相关的数据驱动决策所需的资源和洞察力。这可能意味着从优化生产线到提供实时流程可见性,所有这些都是为了帮助IT团队提高生产力、效率和创新性。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。