课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据技术与云计算技术随着互联网的不断发展而被众多企业引入并应用实践,下面我们就通过案例分析来了解一下,大数据云迁移都有哪些常见问题。
不能提升和转移
直言不讳的说,提升和转移方法代表了终的暴力云迁移,其中应用程序和相关数据从内部部署环境“提升”并“转移”到云平台。问题在于,本地环境和云环境是苹果和橙子的区别。当然,他们都是圆的。仅仅因为企业架构在本地工作得很好,并不意味着它在分布式计算环境中有意义。
寻求节省成本的方法
将大数据迁移到云端提供了许多优势:它是一个生产力涡轮增压器;它是前所未有的业务洞察力的深层次来源;它是了解客户和趋势、密切接触和个性化数据的全新方式。然而,这不是省钱的方法。企业可以并且应该控制迁移和运营费用,但不要期望以更低的价格获得基于云计算的大数据的巨大优势。
需要投资内部团队
由于IT资源有限且团队已经很忙,大多数中小企业缺乏管理云迁移所需的内部带宽和专业知识。当然,外包是一种解决方案,但将内部培训视为一种投资。分布式计算需要特定的技能组合,企业的云计算投资不仅应该在服务中,还应该在其员工中。
不要将数据视为责任
随着有效迁移到云端的巨大努力和复杂性,IT利益相关者、员工和管理人员都可以开始将组织大数据视为比财富更多的责任。不要让这种情况发生。不要只存储企业需要的东西而扔掉剩下的东西,那里有隐藏的价值。当企业进行迁移时,需要更好地保存数据这样重要的东西。
数据云迁移的底线
随着大数据迁移到云端,重要的是不会削减它。提升和转移以及其他强力迁移技术在数据完整性方面留下了问题,终会增加迁移开销,有时甚至是令人望而却步。新一轮的迁移方法更加温和、更具有阶段性,而且用户和成本友好。有了合适的工具,企业的云采用策略就不需要花费太多时间。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。