课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
人工智能技术随着互联网的不断发展而被越来越多的程序员掌握,今天我们就通过案例分析来简单了解一下,人工智能技术应用注意事项分享。
1.让人工智能成为企业的中心
人工智能的成功应用依赖于强有力的领导支持(毕竟要花费许多资源,包含资金、时间和人力)。除了技术团队外,还需要设立跨职能团队,由诸如放射科医生或保险等对应业务组成,连同商业用户、软件工程师、数据科学家、数据分析师、测试人员、架构师和产品经理在内的所有与人工智能项目有接触的专业人士都需要参与进来,这样组织才能更快地利用人工智能,机器学习模型才能更平稳地投入生产。
2.让人工智能长期工作
模型通常是由数据科学家在理想条件下设计的。从研究到实时部署是困难的,很多时候会成为一个障碍。许多人工智能项目由于缺乏干净可靠的数据、直接访问不同类型的数据存储以及计算资源短缺而碰壁。当数据科学家构建模型时,他们应该与DevOps(开发运营)团队合作,为数据管理、部署和人工智能系统监控制定长期计划,以确保成功实施,并顺利进行维护和操作。
3.减少繁琐的数据准备任务
人工智能系统需要投入大量数据准备、集成和模型训练任务,宝贵且训练有素的数据科学家消耗了大量时间。许多这些任务可以自动化,以简化数据管道,更容易地将工作负载从研究转移到生产,检测性能的下降,或检测结果中的漂移,表明模型需要用更完整或更新鲜的数据进行重新训练。
4.利用现成的人工智能
许多公司正在为研究探索和大规模生产部署提供前沿的开源框架、工具、库和模型。那些能够快速利用和定制计算机视觉、语言处理、语音识别和其他常用功能的开源解决方案的公司,走在了前面。利用这些成熟的技术平台,能更快速构建符合企业专业需求的人工智能系统,开发和试错的时间大大降低。
5.实施好的性价比战略
今天的基础设施环境是一片“茂密丛林”。有无数种计算选项的组合,数据科学家可以用于不同的AI工作负载,包括CPU、GPU、AI加速器、云计算、混合云计算、协同定位等。因此,为了以合理的价格实现高性能,执行任务会有很多复杂性和不可预见的挑战。了解人工智能对预算的影响,选择具成本效益的基础设施,可以降低人工智能的总成本,加速创新,限制风险,并加快部署时间。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei456学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。