
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据技术随着互联网的不断发展而逐渐被广泛应用到各个行业之中,而本文我们就通过案例分析来简单了解一下,大数据基础架构分析。
数据交换
如果数据要成为下一代应用的核心支柱,那么就不能完全依赖内部产生数据,而是必须建立一个数据交易机制,因为买数据的成本比生产数据的成本低多了。举个例子,开发自动驾驶汽车的算法需要运用大量数据进行目标检测、目标分类、目标定位以及运动预测。开发者可以在内部产生这些数据,但代价是需要累计几百万英里的驾驶里程;而他们也可以通过API购买这些数据。
应用程序编程接口(API)其实是一组命令,控制外部应用如何接入系统内部的数据集和服务。API是目前数据和服务交易的标准方案。主流的打车软件Uber连接了MapBox的GPSAPI进行车辆定位、Twilio的短信息API发送即时消息以及Braintree的支付API进行付款。这些功能都是购买的已有技术方案,而非Uber自己从零开发。
API的收费模式通常是订阅模式,终端用户可以按使用次数付费,也可以按月付费,还可以按照某种阶梯制度付费。因此,数据提供商会得到经济激励生产数据,而终端用户无须自行生产这些数据。API提供方和付费用户之间还会签署具有法律效力的合约,以避免数据盗用或未经许可转卖等各种恶意行为,并约束数据提供商为自己的数据质量负责。
开源API的可靠性还是不如付费API,因为缺少经济激励和法律协议的约束,没法控制数据质量和延时风险。大多数优质数据仍然来自付费API,这些API通常拥有顶尖的数据源、全栈基础架构以及全职的监控团队,并为了超越竞争对手而不断努力创新。
大数据基础架构和分析
编程系统能够自主学习和自我完善,这个概念一直都受到热烈追捧。学习的过程包括采取行动、收到结果、与历史数据比对分析并产生新洞察,改进方法,终实现目标。因此,目前的大趋势是开发出一个可以自主学习的基础架构,吸取大量数据、对数据进行过滤分类,并基于分析结果产生洞察。
云端计算和储存技术正受到越来越多的关注。有了云计算,用户可以共享云端基础架构储存和处理数据,从而无须占用自己的系统资源。云技术改善了应用的后端流程,增强了不同系统之间的共享,并降低了人工智能和机器学习软件的使用成本。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加抖音太原达内IT培训学习了解。