课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据的概念相信大家应该都是比较熟悉的吧,而本文我们就通过案例分析来简单了解一下,大数据技术应用都有哪些表现形式。
1、数据仓库vs数据湖vs数据管理架构
为了收集、获取海量数据,各种数据存储和管理系统如雨后春笋般诞生,包括数据仓库、数据湖和数据管理架构等,开始加快走向企业应用场景中。
只是,当企业的解决方案以及平台架构开始增多,业务的复杂性也随之增加,企业需要一个标准的数据管理架构,去整合所有的数据以及多样的应用工具,包括能实现跨环境以及混合应用的管理。以往集中式架构,已经不能满足企业的业务需求了。或者说,企业需要更强大的数据分析能力,能对不同的数据源进行访问。这也是以DataFabric为核心的数据管理架构,变得越来越流行的根本原因。
理论上讲,企业需要一个核心数据库,能确保所有的数据都是新、易管理,并且是干净数据;但之前的数据架构模式不可能实现,而DataFabric则能帮助企业实现不同数据的管理,并且能把各种数据之间的关系关联起来,而不是将所有的数据倾倒在一个数据湖中。
所以,在数据的整个治理过程中,所有相关的应用都很重要。比如:我们可以通过数据仓库实现高性能、可重复的分析;而数据湖可以存储用于开发和测试的数据;DataMesh这种基于领域驱动和自服务的数据架构设计模式,可以用来管理分布式数据,因为该服务本身借鉴了微服务和ServiceMesh分布式架构思想。提到DataMesh,有人可能要问DataMesh和DataFabric是什么关系?其实,DataMesh和DataFabric在概念上都差不多,都是一种新型的数据管理架构,都致力于让数据互联互通。
2、一站式大数据平台构建
当企业业务上升到一定量,构建大数据平台成为必须品。问题是,大数据平台如何构建?不同企业有不同选择!
采用两种策略构建企业大数据平台,即一个用于生产,另一个用于分析。但笔者认为,基于一个标准的数据架构构建大数据平台,更有利于数据管理。如果每个业务部门都建自己的平台,需要支持多个数据库,还得需要一个ETL平台完成数据之间的转换。这时,数据的真实性、实时性都会出现挑战。构建大数据平台,终的目标是为了整合数据,让所有的数据实现可视化管理,并且无论数据在企业内部还是云端,都能实现统一管理。多一个数据平台,就意味着企业在进行数据整合时,会增加额外的成本,并且容易出现数据安全隐患。
当然,构建一个能覆盖所有环境的大数据平台,也不是一件容易的事。大多数时候,一个供应商的解决方案也没那么全面,比如:有的提供了查询功能,但治理方面差了一些;有的虽然解决了大数据的规模化处理,但后期的数据迁移成为一大挑战。所以,企业拥有多个企业提供的数据管理解决方案,可能是一种常态。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei456学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。